From behavioral plasticity to neuronal computation: An investigation of associative learning in the honeybee brain
نویسندگان
چکیده
Conditioned behavior as observed during classical conditioning in a group of identically treated animals provides insights into the physiological process of learning and memory formation. However, several studies in vertebrates found a remarkable difference between the group-average behavioral performance and the behavioral characteristics of individual animals. Here, we analyzed a large number of data (1640 animals) on olfactory conditioning in the honeybee (Apis mellifera). The data acquired during absolute and differential classical conditioning differed with respect to the number of conditioning trials, the conditioned odors, the inter-trial intervals, and the time of retention tests. We further investigated data in which animals were tested for spontaneous recovery from extinction. In all data sets we found that the gradually increasing group-average learning curve did not adequately represent the behavior of individual animals. Individual behavior was characterized by a rapid and stable acquisition of the conditioned response (CR), as well as by a rapid and stable cessation of the CR following unrewarded stimuli. In addition, we present and evaluate different model hypotheses on how honeybees form associations during classical conditioning by implementing a gradual learning process on the one hand and an all-or-none learning process on the other hand. In summary, our findings advise that individual behavior should be recognized as a meaningful predictor for the internal state of a honeybee irrespective of the group-average behavioral performance.
منابع مشابه
High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids
Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...
متن کاملBehavioral and neural plasticity caused by early social experiences: the case of the honeybee
Cognitive experiences during the early stages of life play an important role in shaping future behavior. Behavioral and neural long-term changes after early sensory and associative experiences have been recently reported in the honeybee. This invertebrate is an excellent model for assessing the role of precocious experiences on later behavior due to its extraordinarily tuned division of labor b...
متن کاملO7: Research on the Brain and Learning: Plasticity and Variability and Their Impact on Talent Identification
This talk will introduce the idea that talent development is related to learning where learning is the physiological process of neuro-plastic changes in the brain. To develop talents, individuals must move from novice or beginner’s status to expertise levels of knowledge or skills in a particular domain. Learning depends on maximizing an individual’s potential through the experience...
متن کاملOlfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities
The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learnin...
متن کاملAssociative and Non-Associative Plasticity in Kenyon Cells of the Honeybee Mushroom Body
The insect mushroom bodies are higher-order brain centers and critical for odor learning. We investigated experience dependent plasticity of their intrinsic neurons, the Kenyon cells (KCs). Using calcium imaging, we recorded KC responses and investigated non-associative plasticity by applying repeated odor stimuli. Associative plasticity was examined by performing appetitive odor learning exper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013